曲率半径为曲率的倒数,半径是圆的半径,圆上的弯曲度到处都是一样的,所以圆的曲率半径就是圆的半径。直线不是弯曲的,并且与该点直线相切的圆的半径可以任意大,所以直线没有曲率半径,圆的半径越大,形状越小。曲率半径是数学的概念,而数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
曲率半径主要用来描述曲线在某一点的弯曲变化程度。例如,圆上的弯曲度到处都是一样的,所以曲率半径就是圆的半径;直线不是弯曲的,并且与该点直线相切的圆的半径可以任意大,所以直线没有曲率半径,圆的半径越大,形状越小。弯曲度越小,越像直线。因此,曲率半径越大,曲率越小,反之亦然。
在微分几何中,曲率的倒数就是曲率半径,即R=1/K。平面曲线的曲率定义为曲线上一点的切向角对弧长的微分旋转率,表示曲线偏离直线的程度。对于曲线,它等于最靠近该点曲线的圆弧半径。对于曲面,曲率半径是法向截面或其圆组合最合适的半径。
“张承辉博客” 曲率半径和半径的关系 曲率半径和半径的关系是 https://www.zhangchenghui.com/247714